

- 1. Draw a molecule of water, label the charges and bonds.
- 2. Why is water polar?
- 3. Why is it important that water is polar?

Logistics

- Unit 1 Assessment is on Thursday, October 3
 - Covers chapters 1-2

Magic of Water

- You have 10 minutes to do as many lab stations as you can
- You will write your answers on page 11
 - Make sure to label each station
- CLEAN UP AFTER YO'SELF

Magic of Water Caution, you are in the splash zone

Logistics

- Let's go over the answers to the Magic of Water Lab
- PAY ATTENTION, YOU MUST KNOW THIS FOR YOUR TEST

Build a Macromolecule

- Class Discussion
 - How are all of these molecules similar?
 - How are they different?

Build a Macromolecule

CASE STUDY

Element	Percentage of Body Weight	Uses
Phosphorus	1.0	Formation of bones and teeth
Potassium	0.25	Regulation of nerve function
Sulfur	0.25	Present in two amino acids
Sodium	0.15	Regulation of nerve function, blood levels
Chlorine	0.15	Fluid balance
Magnesium	0.05	Bone and muscle function
Iron	0.006	Carrying oxygen in the blood

How many valence electrons does carbon have?

How many bonds can it make?

Carbon

Carbon

Carbon can make 4 covalent bonds, which allows it to make relatively stable molecules

Carbon

Monomers are the building blocks that make up polymers

Polymerization handshake!

Polymerization is the process of putting monomers together to make polymers

 When the molecules of life polymerize, sometime water is lost during dehydration synthesis

- There are four classifications of macromolecules
- To learn more about them we will be learning and sharing
- Tape the table on to page 12 and title the page "Carbon Compounds"

- Table Groups: 5 min
 - Read about the kind of macromolecule on the card you are given
 - Fill out your column of the table
 - MAKE SURE EVERYONE UNDERSTANDS THE INFORMATION

- Letter Groups: 10 min
 - Table groups 1-4
 - A's go to station 1
 - B's go to station 2
 - C's go to station 3
 - D's and E's go to station 4
 - Table groups 5-8
 - A's go to station 5
 - B's go to station 6
 - C's go to station 7
 - D's and E's go to station 8

- Letter Groups: 10 min
 - Each person should teach the others about the kind of macromolecule they learned about
 - Everyone should fill in the table in their own notes

Carbohydrates Used for energy and structure

Carbohydrates

Always have the ratio: 1 carbon: 2 hydrogen: 1 oxygen

Carbohydrate monomers: monosaccharides

Carbohydrate dimers: disaccharides

Sucrose

Carbohydrate polymers: polysaccharides in plants

Carbohydrate polymers: polysaccharide in animals

Proteins

Used for structure and function

Protein Monomer: Amino Acid H Η Η Η R

Protein polymers: polypeptide chains

Amino acids are connected by peptide bonds

What kind of reaction is this?

Protein polymers: polypeptide chains

Each shape represents a different amino acid

Amino acids are connected by peptide bonds

Protein Structure

Functional proteins are made of multiple polypeptide chains

Denatured Proteins The structure of proteins determines the function

Lipids

Used for energy

Risings Program 54

Lipid polymers: triglycerides

Lipid polymers: animal fats

Animal fats are solid because they are made of saturated fatty acids, which are more compact

Н C-C-O-C-H -0-Č-H C-0-Č-H Tristearin

Lipid polymers: plant oils

Plant oils are liquid because they are made of unsaturated fatty acids, which are not as compact

Nucleic Acids

Used as instructions

Nucleic acid types: RNA and DNA

RNA uses ribose sugar, DNA uses deoxyribose

Nucleic acid monomers: nucleotide

Nucleotides have three parts: Phosphate, sugar, base

Nucleic acid polymers: RNA and DNA

