

- List three factors that could have contributed to skewed data in the algae lab.
- 2. As a scientist, how would you eliminate those factors in future experiments?

Constructing a Graph

Constructing a Graph

- Take 10 minutes to start your graphs
- Ask Questions!

 Ecologists tend to find 2 patterns of growth in populations:

- Exponential Growth: Under ideal conditions with unlimited resources, a population will increase exponentially.
- The larger the population gets, the faster it grows.

 Logistic Growth: When a populations growth slows and then stops, following a period of exponential growth.

 Carrying Capacity: maximum number of individuals of a particular species that a particular environment can support.

What determines carrying capacity?

• Take our your population packets.

Population Review

• What is the formula for density?

- What is the formula for density?
- **D** = **m**/**v**

- What is the formula for density?
- **D** = m/v
- For populations:
 - Pop. Density = # of animals/area

• What are the 3 patterns of population distribution?

• Everyone in the corner!

Density Dependent Limiting Factors

Density Dependent Limiting Factors

Density Dependent Limiting Factors

Density Independent Limiting Factors

Density Independent Limiting Factors

Density Independent Limiting Factors

 What will happen when a population exceeds the available resources?

Population Crash

Population Crash

Population Crash

