

- 1. What is the polysaccharide that animals make?
- 2. What is an example of a lipid made by a plant?
- 3. What macromolecules may have been in your dinner last night?

- 1. What are the 4 types of macromolecules?
- 2. What is the process of making polymers called?
- 3. What macromolecules may have been in your dinner last night?
- 4. Is the importance of a element in the body related to its percentage of body weight? USE EVIDENCE FROM THE DATA TABLE.

~		OT		
CA	SE	SI	UD)Y
		• ••		

Element	Percentage of Body Weight	Uses
Phosphorus	1.0	Formation of bones and teeth
Potassium	0.25	Regulation of nerve function
Sulfur	0.25	Present in two amino acids
Sodium	0.15	Regulation of nerve function, blood levels
Chlorine	0.15	Fluid balance
Magnesium	0.05	Bone and muscle function
Iron	0.006	Carrying oxygen in the blood

Logistics

- Unit 1 Assessment is on Thursday, October 3rd
 - Covers chapters 1-2

Monomers and Polymers

Polymerization handshake!

Monomers and Polymers

Polymerization is the process of putting monomers together to make polymers

Monomers and Polymers

 When the molecules of life polymerize, sometime water is lost during dehydration synthesis

Carbohydrates Used for energy and structure

Carbohydrates

Always have the ratio: 1 carbon: 2 hydrogen: 1 oxygen

Carbohydrate monomers: monosaccharides

Carbohydrate dimers: disaccharides

Sucrose

Carbohydrate polymers: polysaccharides in plants

Carbohydrate polymers: polysaccharide in animals

Proteins

Used for structure and function

Protein Monomer: Amino Acid H Η Η Η R

Protein polymers: polypeptide chains

Amino acids are connected by peptide bonds

What kind of reaction is this?

Protein polymers: polypeptide chains

Each shape represents a different amino acid

Amino acids are connected by peptide bonds

Protein Structure

Functional proteins are made of multiple polypeptide chains

Denatured Proteins The structure of proteins determines the function

Lipids

Used for energy

Risings Program 54

Lipid polymers: triglycerides

Lipid polymers: animal fats

Animal fats are solid because they are made of saturated fatty acids, which are more compact

Н C-C-O-C-H -0-Č-H C-0-Č-H Tristearin

Lipid polymers: plant oils

Plant oils are liquid because they are made of unsaturated fatty acids, which are not as compact

Nucleic Acids

Used as instructions

Nucleic acid types: RNA and DNA

RNA uses ribose sugar, DNA uses deoxyribose

Nucleic acid monomers: nucleotide

Nucleotides have three parts: Phosphate, sugar, base

Nucleic acid polymers: RNA and DNA

Macromolecules

 Why are polymers important for life?

 Today you will be using chemical indicators to test for the presence of various macromolecules in the hopes of identifying each solution

- Today we will complete lab data collection procedures
 - Follow the directions CAREFULLY
 - CLEAN UP AFTER YOURSELVES

 A chemical indicator is a chemical that shows if a particular molecule is present or not

- When we run chemical indicator tests we always use a positive and negative reference
 - The following are references for the tests you will run for this lab

Chemical Tests: Starch

Positive Lugol's Test

Negative Lugol's Test

Chemical Tests: Proteins

Positive Biurets Test

Negative Biurets Test

Chemical Tests: Lipids

- PLEASE, PLEASE, PLEASE
 <u>CLEAN UP AFTER YO'SELF</u>
- **BE CAREFUL!**

- Complete your pre-lab and hypothesis
- Get checked off
- Goggles on!
- Start your lab

- Enter your results:
- http://bit.ly/2mldQSt

Start Analysis

- Pre-Lab:
 - 1. What is a macromolecule?
 - 2. Based on your knowledge of macromolecules, which molecules do you think will be in...
 - a. The meat:
 - b. The cheese:
 - c. The bun:
 - d. The fries:
 - 3. What is a chemical indicator?
- **Hypothesis:** (If sample 1 is (food item) then it will contain (molecule type) because...

- Include:
 - Pre-Lab
 - Hypothesis
 - Data

Food Item	<u>Starch</u>	Monosaccharide	<u>Protein</u>	<u>Lipid</u>
1				
2				
3				
4				

- Analysis:
- 1. Name the monomers for each macromolecule:
 - a. Carbohydrates:
 - **b.** Proteins:
 - c. Lipids:
 - d. Nucleic Acids:

2. Which macromolecule was the most common in the food items?

3. Which macromolecule was the least common in the food items?

4. Was there any contradictory results for any of the food items? If so, identify and explain them.